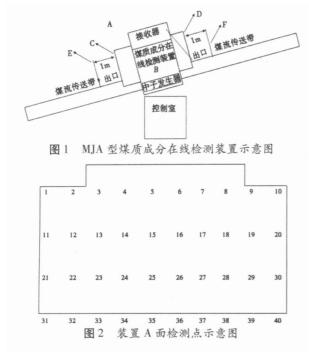
【辐射与安全】

某电厂煤质成分在线检测装置防护检测

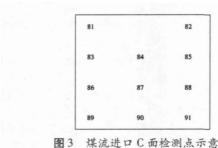
群,杨小勇,徐小三

中图分类号: $TI.816^+$. 2 文献标识码: B 文章编号: 1004-714X(2009)04-0465-01

【摘要 】 目的 了解煤质成分在线检测装置外照射辐射水平,保障操作人员的健康安全。 方法 对装置周围进 行布点检测, 加强质控措施。结果 煤质成分在线检测装置外 照射辐射水 平不高。结论 应加强操 作人员的防护意 识。


【关键词】 煤质成分在线; 中子; 防护

目前国内火力发电机组燃煤煤质变化非常大、煤质分析滞 后,严重影响锅炉的安全运行。煤质成分在线检测装置,能够 实现全煤流在线煤质检测,在煤炭入炉前提供实时煤质数据, 为锅炉提供最经济燃用煤质指导,从根本上解决了上述难 题[1]。整个系统主要由安装在输煤皮带上的测量单元、防护单 元、水份测量单元、限高单元以及系统控制柜和测量控制柜等 组成。


我中心受某公司委托,对一台已安装的 MA型煤质成分在 线检测装置进行放射 防护检测[2]。

1 材料及方法

- 1. 1 仪器 美国 Victoreen公司产 451 P型 % γ剂量率仪、英国 NE公司产 MK-7型中子剂量率仪。
- 1.2 方法 在装置运行时分别对装置表面、煤流进出口处以 及操作室的辐射水平进行检测^[3]。装置示意图见图 1,装置 A 面、煤流进出口 C面检测点示意图见图 2图 3装置 B面(检测 点 41~80)跟 A面检测点对应,装置 D(检测点 92~102)、E(检 测点 103~113)和 F面(检测点 114~124)跟 C面检测点对应, 操作室检测点示意图见图 4 装置的中子发生器中子产额为 $3.1 \times 10^7 \text{ n/s}$

作者单位: 江苏省疾病预防控制中心, 江苏 南京 2.1009 作者简介: 陈群(1975~), 男, 江苏金湖人, 主管技师, 主要从事放射防护 检测与职业病危害评价工作。

煤流进口C面检测点示意图

控制室检测点示意图

2 结果

2.1 装置表面、煤流进出口处辐射水平 煤质成分在线检测装置 运行时, 装置表面、煤流进出口处辐射水平检测结果见表 1

表 1 装置表面、煤流进出口 处辐射水平检测结果 (μ Svo h-1)

18	1 1	且 众四、/木/	儿处山口入	_和	位 例 55 木	(11)
村	验测点	点数(个)	γ范围	γ平均	中子范围	中子平均
	1~10	10	0 4~1 6	0.8	< 1	<1
1	1 ~ 20	10	$0.5 \sim 1.5$	0.9	< 1	< 1
2	$21 \sim 30$	10	$0\ 5 \sim 1\ 2$	0.8	< 1	< 1
3	$81 \sim 40$	10	$0.5 \sim 1.0$	0.8	< 1	< 1
4	1 ~ 50	10	$0.5 \sim 0.9$	0.6	< 1	< 1
5	1 ~ 60	10	$0\ 4\sim 0\ 7$	0.5	< 1	< 1
6	$51 \sim 70$	10	$0.5 \sim 0.8$	0.6	< 1	< 1
7	1 ~ 80	10	$0.4 \sim 0.7$	0.6	< 1	< 1
8	81 ~82	2	1. 3 ~ 3 1	2 2	/	/
8	33 ~ 85	3	1. 3 ~ 1 9	1. 6	2	2
8	86~88	3	$0.7 \sim 1.2$	0.9	2	2
8	39~91	3	$0.5 \sim 0.9$	0.8	2~3	2
9	2 ~ 93	2	$2\ 0 \sim 2\ 4$	2 2	/	/
9)4 ~ 96	3	1. 4 ~ 1 6	1. 5	2	2
9	7 ~ 99	3	1. 2 ~ 1 5	1. 4	2	2
10	$00 \sim 10^{\circ}$	2 3	$0.9 \sim 1.0$	0.9	2	2
10	3 ~ 10	4 2	$0.8 \sim 1.2$	1. 0	/	/
10	05 ~ 10'	7 3	$0.3 \sim 0.5$	0.4	< 1	< 1
10	8 ~ 110) 3	$0.4 \sim 0.6$	0.5	< 1	< 1
11	1 ~ 11.	3 3	$0~6\sim0~9$	0.7	< 1	< 1
11	4~11:	5 2	$0.5 \sim 1.3$	0.9	/	/
11	6~118	3	$0\ 7\sim 0\ 9$	0.8	< 1	< 1
11	9~12	1 3	$0~6 \sim 0~8$	0.7	< 1	< 1
_12	22~124	4 3	0 5~0 6	0.7	< 1	<1

【辐射与安全】

野外 γ 照相现场的外照射防护探讨与分析

白桂林¹,哈日巴拉²,邓 君³,曹 磊³,王成国²

中图分类号: $TL75^+$ 2 2 文献标识码: B 文章编号: 1004-714X(2009)04-0466-02

【摘要 】 目的 分析某石化企业应用野外 γ 照相时的外照射辐射水平和放射防护状况,为辐射防护最优化和有效控制其职业危害提供建议。方法 通过现场考察,了解典型的野外 γ 照相工作过程中,工作人员在辐射场中的分布和居留情况,并采用主动式和被动式方法测量辐射场剂量水平,综合分析其放射性职业危害水平。结果 从个人剂量监测数据和现场调查数据说明,正常工作情况下,从事野外 γ 照相的工作人员一般接受的年剂量平均值为 3 94 $^{\mathrm{m}\sqrt[3]{2}}$ 4 结论 野外 γ 照相过程中的三个环节由于人员近距离接触放射源,外照射水平较高,应引起重视,并做好辐射防护最优化和相应的管理工作。

【关键词】 野外 γ 照相; 外照射防护; 辐射防护最优化原则

野外 Y 照相作为一种快速、便捷和准确的大型工件无损探伤手段得到越来越广泛地的应用。由于工作中不可避免的涉及各类人员对放射源的接触,产生的放射危害不容忽视。一定意义上,由于野外环境和人员接触的情况复杂,如果辐射防护措施和管理不到位,放射源失去有效控制,该类放射源应用可能导致职业性超剂量照射事故,甚至公众超剂量照射事故的发生。笔者通过对典型的该类型放射性场所辐射水平现场测量结果的分析,结合个人剂量监测的结果依据国家标准提出了相关的建议,分析辐射危害水平并对辐射防护问题进行探讨。

1 研究对象与方法

1.1 YG—60 探伤机的工作原理 应用于野外 γ 照相放射性同位素主要有 60 C⁰和 137 C²等,可根据工件的不同规格,调整使用不同活度的 γ 密封放射源,其中, 60 C²密封源放射性活度最高约 $_3$ $_7\times 10^{12}$ Bq (100 C)。图 1 示出了 YG—60 探伤机及源容器外形,源容器的屏蔽体一般由贫化铀或铅构成,图 2 示出了探伤机快门打开后,放射源位于主机内,通过主机源通道形

作者单位: 1 内蒙古锡林郭勒盟疾病预防控制中心 内蒙古锡林浩特 026000 2 内蒙古疾病预防控制中心; 3 中国疾病预防控制中心辐射防护与核安全医学所

作者简介: 白桂林(1964~)。男, 主管医师, 从事放射卫生与防护工作。通讯作者: 王成国. 副主任技师。

成的前向锥形射线束,在离前连接器一米距离处射线束的直径约为 150mm

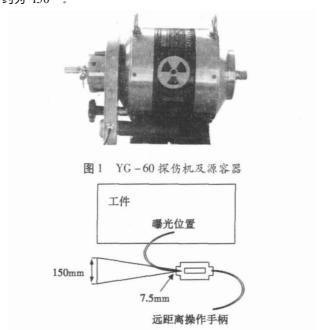


图 2 探伤机工作状态及前向射束示意图

2 2 控制室辐射水平 煤质成分在线检测装置运行时,控制 室辐射水平检测结果见表 2

表 2 控制室辐射水平检测结果 (μ Sv。 h⁻¹)

长河上	检测结果		
检测点	γ	中子	
125	0 2	< 1	
126	0 2	< 1	
127	0 2	< 1	
128	0 2	< 1	
129	0.7	< 1	

3 讨论

- (1)煤质成分在线检测装置表面辐射水平最高为 1. 2⁴ SV · h⁻¹,中子未检出,说明装置表面的屏蔽厚度符合要求。
- (2)煤流进出口表面辐射水平最高为 3 ¼ S^{v。} h⁻¹,中子 为 3^μ S^{v。} h⁻¹。而到了 1^m处的辐射水平最高为 1. 3^μ S^{v。} h⁻¹,中子未检出,说明操作人员应考虑煤流进出口表面的中子

辐射,加强辐射防护意思。

- (3)控制室辐射水平最高为 0.7^{μ} $S^{V^{a}}$ h^{-1} ,中子未检出,说明控制室由于距离原因,辐射水平较低,符合 GB18871-2002 《电离辐射防护与辐射源安全基本标准》的要求 1.4 。
- (4)建议参照 GBZ125-2002《含密封源仪表的卫生防护标准》对煤质成分在线检测装置做以下限制, 装置表面及控制室对人员的活动范围不限制, 在煤流进出口 1^m区域内做到很少有人停留, 1^m区域外对人员的活动范围不限制。

参考文献:

- [1] 徐军伟, 崔国圣, 宋兆龙. 煤质成分在线检测装置[J]. 江 苏电机工程, 2005 24(1).
- [2] 崔国圣, 李嵌, 徐军伟. MJA型煤质成份在线检测装置在电厂的应用[J.电站系统工程, 2005 (4).
- [3] GBZ125-2002 含密封源仪表的卫生防护标准[S].
- [4] GB18871-2002 电离辐射防护与辐射源安全基本标准 [\$].