【论著】

名古屋市室内空气²²²Rn、²²⁰Rn 的测量及 EEC_{Tn}估算

陈英民¹,饭田孝夫²

中图分类号: R144 文献标识码: A 文章编号: 1004-714X(2005)02-0093-03

【摘要】目的 研究室内空气中²²² Rn、²⁰ Rn 浓度以及室内平衡当量²⁰ Rn 浓度 EEC _{Tn}。方法 利用名古屋大学研制的新型被动累积式²²² Rn、²⁰ Rn 测量杯在日本名古屋市进行了小规模的室内²²² Rn、²²⁰ Rn 的浓度调查,利用 Deposition Rate Monitor 估算了住宅室内 EEC _{Tn}。结果 在随机抽查的 20 个住宅室内²²² Rn 平均浓度为 16.94 B qm ⁻³;其中 5 个住宅室内²²⁰ Rn 平均浓度为 58.09 Bqm ⁻³,EEC _{Tn} 平均值为 2.75 Bqm ⁻³。结论 本研究结果与日本全国性调查结果²²² Rn 浓度 平均值 15.5 Bqm ⁻³ 相当。 20 Rn 的浓度在某些泥土墙壁的住房内可能达到比较高的浓度,进行进一步的研究是很有必要的。

【关键词】 室内空气; 222Rn; 220Rn 浓度; EECIn; 被动累积式测量杯

Measurement of Indoor 222 Rn, 220 Rn Concentration and EEC $_{Tn}$ in Nagoya Japan. Chen Ying-min, Takao IIDA. *Institute of Radiation Medicine Shandong Academy of Medical Sciences*, *Jinan* 250062. *China*.

(Abstract) Objective To study 222 Rn, 220 Rn concentration and EEC $_{Tn}$ in indoor air. Method A small-scale survey of indoor radon and thoron concentration was carried out by using the new type of 222 Rn, 220 Rn passive integrating cup monitor. Meanwhile the equilibrium equivalent concentration of thoron (EEC $_{Tn}$) was measured with the Deposition Rate Monitor. Result For the random selective 20 dwellings the average concentration of 222 Rn was 16. 94 Bqm $^{-3}$. The averaged concentration of EEC $_{Tn}$ and 220 Rn was 2. 75 Bqm $^{-3}$ and 58. 09 Bqm $^{-3}$ respectively in 5 dwellings. Conclusion Indoor air 222 Rn concentration of this study is consistent with the national survey of Japan in which the result was 15.5 Bqm $^{-3}$. When the wall of dwelling is built by mud indoor 20 Rn concentration maybe very high so further research on indoor 20 Rn is necessary.

Key words Indoor Air; ²²²Rn · ²²⁰Rn Concentration; EEC_{Tn}; Passive Integrating Cup Monitor

室内 22 Rn 及其子体是人类接受到的最重要的辐射危害之一,占总的天然辐射所致剂量的 50%左右 $^{[1]}$ 。 220 Rn(半衰期 55.6 s) 及其子体对人的照射据估算占 222 Rn及其子体照射的 7%左右。然而,最近有学者发现在一些住室内 220 Rn 的浓度很高,其放射危害不能被忽略 $^{[2]}$ 。精确的测量室内 222 Rn、 220 Rn 的浓度是非常重要的,基于各种固体径迹探测器各国学者发明了各种探测杯,用于大规模的室内 222 Rn 的研究。上世纪九十年代开始,杯法被利用来测量室内 220 Rn,但是对于低浓度的情况探测效率和探测下限不能满足测量要求。本研究利用名古屋大学研制的新型 222 Rn、 220 Rn 杯式探测器 $^{[3,4]}$,对名古屋市部分住房进行了小规模的室内 222 Rn、 220 Rn 浓度测量。同时,本研究还利用名古屋大学研制的Deposition Rate Monitor $^{[4]}$ 对室内 220 Rn 子体浓度进行了测量,估算了室内平衡当量 220 Rn 浓度(EEC_{Tn})。

²²²Rn、²²⁰Rn 探测杯的构造和刻度系数

 1.1^{222} Rn、 220 Rn 探测杯的构造 名古屋大学研制的新型 222 Rn、 220 Rn 探测杯如图 1 和图 2 所示。 222 Rn 和 220 Rn探测杯都由一个半径 37.5 mm 的不锈钢半球扣在铝制的盘上构成。铝盘上位于半球中心有一直径 2 cm的圆形窗孔放置 CR-39,为避免存在于 CR-39上的电场的影响,一片厚度 6 μ m 的 铝箔覆盖在窗孔上面。 222 Rn 探测杯还有一个直径 0.4 cm 的圆孔,覆盖滤膜(ADVANTEC, Toyo Roshi Kaisha, Ltd. pore size 0.8

作者单位: 1 山东省医学科学院放射医学研究所,山东 济南250062; 2 日本国立名古屋大学大学院原子核专攻作者简介: 陈英民(1966~), 男, 副研究员, 研究方向: 辐射监测与防护。

 $\mu_{\rm m}$)。 在²²⁰ Rn 探测杯上面有 6 个直径 2 cm 的圆孔,覆盖同样的滤膜。²²² Rn、²²⁰ Rn 探测杯必须同时放置在室内 1 m 高度且距离墙壁 20 cm 的位置。

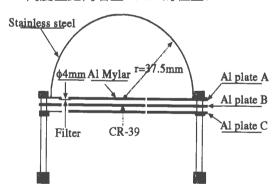


图 1 222Rn 探测器的剖面图

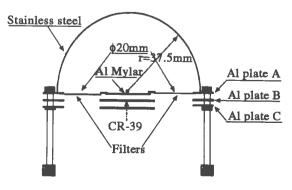


图 2 220Rn 探测器的剖面图

 1.2^{222} Rn、 220 Rn 探测杯的刻度系数和探测下限 因为 222 Rn、 220 Rn 探测杯是以 CR-39 上面的径迹密度来计算 222 Rn、 220 Rn 浓度,所以刻度系数可以用下列公式表示:

$$Q_{Rn} = \frac{N_{Rn} - N_B}{CF_{Rn} \circ T} \tag{1}$$

$$Q_{Tn} = \frac{N_{Tn} - N_{Rn}}{CF_{Tn} \circ T} \tag{2}$$

其中, Q_{Rn} 和 Q_{Tn} 是 222 Rn 和 220 Rn 的平均浓度,单位 Bqm $^{-3}$; N_{Rn} 和 N_{Tn} 是 CR - 39 上面的 径迹密度,单位 tracks cm $^{-2}$; CF_{Rn} 和 CF_{Tn} 是 222 Rn 和 220 Rn 探测杯的刻度 系数,单位 tracks cm $^{-2}$ (Bqm $^{-3}$ h) $^{-1}$; T 是暴露时间,单位 h; N_B 是 CR - 39 的 本底 径迹密度,单位 tracks cm $^{-2}$ 222 Rn 探测杯的刻度:将 6 个 222 Rn 探测杯的刻度:将 6 个 222 Rn 探测杯放入已知 222 Rn 探测杯的刻度:将 6 个 222 Rn 探测杯的刻度;将 222 Rn 浓度的氦室内一段时间(根据 222 Rn 浓度的氦室内一段时间(根据 220 Rn 浓度的氦度,数取平均值。 220 Rn 探测杯的刻度;将 222 Rn 和 220 Rn 探测杯的刻度;将 222 Rn 和 220 Rn 探测杯的刻度;然后对 CR 20 Rn 浓度和 20 Rn 深度,如 在 20 Rn 浓度和 20 Rn 浓度,如 在 20 Rn 来衰期短,要得到比较准确的 20 Rn 浓度刻度至是比较困难的。利用蒙特卡罗法对 222 Rn 和 20 Rn 探测杯的刻度系数进行估算。实验法和理论法的结果见表 220 Rn 种方法得到的刻度系数相符的很好。

表 1 222 Rn 和 220 Rn 探测杯的刻度系数 [\times 10 $^{-3}$ tracks cm $^{-2}$ (Bqm $^{-3}$ h) $^{-1}$]

探测杯	实验法刻度系数	理论法刻度系数
²²² Rn 探测杯	3.02	2. 70
²²⁰ Rn 探测杯	1.64	1. 83

 222 Rn 和 220 Rn 探测杯的探测下限. 对于 222 Rn 探测杯, 3 个月间隔时其 222 Rn 的测量下限为 1. 6 Bqm $^{-3}$; 220 Rn 探测杯对 220 Rn 的探测效率估算为 8. 1 Bqm $^{-3}$.

3 Deposition Rate Monitor 的构造和原理

Deposition Rate Monitor 由固定在不锈钢盘上面的 CR—39 和覆盖在上面的铝箔 (Aluminized Plastic Film) 和聚丙烯膜 (Polypropylene Film)组成,覆盖层的总厚度相当于空气等效厚度 71.5 mm。使得只有²²⁰ Rn 的子体²¹²Po 可以在 CR—39 上形成径迹。通过测量 CR—39 上的径迹密度可以估算 EEC_{Tm} 原理在文献 5] 中有详细描述。

4 测量结果

于 2003 年 1 月至 5 月在名古屋市随机选取 20 个民用住宅进行了小规模的调查, 其中有 5 套住房同时测量了室内 222 Rn、 220 Rn 浓度和 EEC_{Tn} ; 其余 15 个住宅只测量 222 Rn 浓度。结果见图 3、图 4 和图 5。

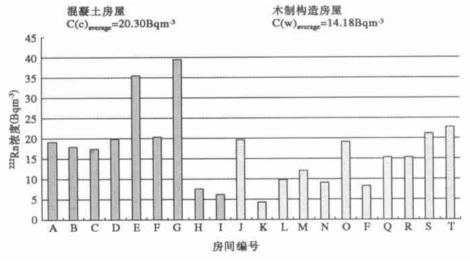


图 3 222Rn 在混凝土和木制房屋内的浓度

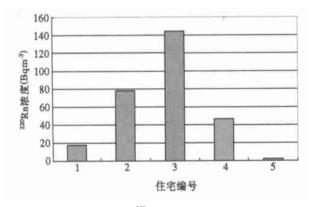


图 4 室内²²⁰Rn 浓度测量结果

所测量的 20 座住宅室内²²² Rn 浓度平均值为

 $16.94~\mathrm{Bqm}^{-3}$,水泥建材住房平均为 $20.30~\mathrm{Bqm}^{-3}$,木制房屋为 $14.18~\mathrm{Bqm}^{-3}$,水泥住房略大于日本传统木制住房。室内 $^{220}\mathrm{Rn}$ 浓度平均值为 $58.09~\mathrm{Bqm}^{-3}$,水泥混凝土住宅室内 $^{220}\mathrm{Rn}$ 浓度范围在 $18\sim80~\mathrm{Bqm}^{-3}$,木制的两个住房相差较大,原因在于三号住宅墙壁使用了泥土,而五号住宅墙壁是纯木板,因为泥土中含有较高的 $^{232}\mathrm{Th}$,所以两者相差极大。同样由图 $5~\mathrm{th}$ 也可以得出同样的结论, $5~\mathrm{th}$ 个住宅室内 EECT

5 结论

在日本名古屋市进行的小规模的室内 222 Rn、 220 Rn 的浓度调查结果表明, 在随即调查的 20 个住宅室内 22 Rn为 16.94 B $_{0}$ Bm $^{-3}$, 水泥建材住房平均为 20.30 B $_{0}$ Bm $^{-3}$,

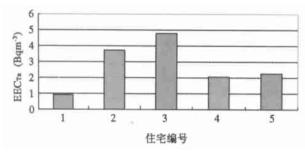


图 5 室内 EEC_{Tn}的测量

木制房屋为 $14.18~\mathrm{Bqm}^{-3}$,水泥住房略大于传统木制住房。 $5~\mathrm{Ctr}$ 室内 $^{220}\mathrm{Rn}$ 平均浓度为 $58.09~\mathrm{Bqm}^{-3}$,同时还利用 Deposition Rate Monitor 估算了这 $5~\mathrm{Ctr}$ 内 $\mathrm{EEC}_{\mathrm{Tn}}$ 平均值为 $2.75~\mathrm{Bqm}^{-3}$,可以明显看出,对于木制住房,如果墙壁是含有泥土的日本传统房屋,则室内 $^{220}\mathrm{Rn}$ 浓度很高,如果墙壁只是纯木板,则室内 $^{220}\mathrm{Rn}$ 浓度较低。

本研究结果与日本全国性调查结果 22 Rn 浓度平均值 15.5 Bqm $^{-3}$ 比较接近 $^{\mathbf{IG}}$ 。说明这种新型的 222 Rn、 220 Rn 被动累积测量杯是探测效率高、价格低、便于进行大规模调查的仪器。 220 Rn 的浓度在某些泥土

墙壁的住房内可能达到比较高的浓度,特别在中国农村有很多住房使用土墙,进行必要的调查是很有必要的。

参考文献:

- [1] UNSCEAR: Sources and Effects of Ionizing Radiation, New York, United Nations (2000)[R].
- [2] Steinhausler, F.: Environmental ²⁰Rn; A Review. Environ[J]. Int. 22 (Suppl. 1) 1111—1123, 1996.
- [3] Qiuju Guo, Takao IIDA, Katsumi OKAMOTO, Measurements of Thoron Concentration by Passive Cup Method and its Application to Dose assessment [J]. Journal of Nuclear Science and Technology, 1995, 32(8): 794—803.
- [4] T. Iida, R. Nurishi, and K. Okamoto, Passive Integrating ²²²Rn and ²²⁰Rn Cup Monitors with CR 39 Detectors [J]. Environ. Int. 1996, 22 (Suppl. 1): 641—647.
- [5] Weihai Zhuo and Takao Iida, Estimation of Thoron Progeny Concentration in Dwellings with Their Deposition Rate Measurements
 [J]. Journal of Health Physica, 2000, 35(3): 365—370.
- [6] Tetsuya Sanada, Kenzo Fujimoto, Keiji Miyano, et al. Measurement of nationwide indoor Rn concentration in Japan[J]. Journal of Environmental Radioactivity, 1999, 45: 129—137.

(收稿日期:2004-11-22)

【工作报告】

阜新市一起现场探伤发生的意外照射

李秀菊, 刘丽艳, 王 靖

中图分类号: TL73 文献标识码: D

2003年阜新市一家从事工业 X 射线探伤的单位, 因操作人员疏忽, 发生了一起工作人员被射线误照的意外照射, 致使 2 名工作人员受到不同程度的照射。

1 经过

2 原因分析

- 2.1 放射工作人员的放射防护意识不强 有的放射工作人员 责任心不强,警惕性不高以及管理制度执行不严,没有严格按照操作规程进行操作。
- 2.2 单位领导及安全部门重视不够 该单位无专用探伤室,

每次探伤作业均在厂房内进行,为了抢时间,不影响生产,大修期间探伤作业通常分两组进行,尽管该厂制定了安全防护管理措施和操作规程,但仍存在一些问题。2003年7月我们在对该厂进行放射卫生监督检查时,就发现该厂在厂房内分两组进行现场探伤时工作人员无对讲装置,无放射工作人员个人剂量报警仪,两组无统一的安全躲避地点,随意躲避,就此我们提出了进一步完善安全管理措施等意见,但该厂未按监督意见来整改,造成这次两名放射工作人员受到射线照射。

3 工业探伤的安全防护管理

- 3.1 完善安全防护管理措施和操作规程 对开展现场探伤的单位,工作时要划出控制区和管理区,并设置明显的标志和声、光报警装置。对开展固定式探伤的单位,要设置"门一机"连锁装置,以及出束信号指示灯等安全措施,杜绝非放射工作人员进入放射工作场所。制定完善的安全防护管理措施和操作规程,并要求严格遵照执行。
- 3.2 加强对本单位工业採伤工作的监督管理 放射工作单位 内部要制定一套完善的防护管理体制,实行严格的奖惩制度, 完善内部放射防护监测,放射工作人员体检结果,设备情况,设 备检修等档案。市卫生监督部门应每年进行一次监督检查,如 有意外照射应及时上报,并进行妥善处理。

(收稿日期:2004-11-28)