【医疗照射】

新旧两台医用电子加速器的性能比较

刘建军,许志勇,陈东辉,喻晓彩

中图分类号: R144 文献标识码: B 文章编号: 1004-714X(2004)03-0210-01

【摘要】目的 对国产新医用电子加速器和进口二手医用加速器的性能进行比较。方法 按现行有关标准进行,对两台医用电子加速器的5大类共26项性能指标进行检测。结果 除进口二手机电子线各档的性能超标而暂不能应用外,两台医用电子加速器的性能指标均符合相关国家标准。进口二手机的剂量监测系统性能较好,国产新机辐照性能较好。结论 在性能上两台加速器无明显差别,医疗单位新安装医用电子加速器之前,应综合考虑配置。

【关键词】 医用电子加速器;性能;检测;比较

随着肿瘤治疗技术的不断发展, 医用电子加速器的应用日渐增多, 其技术的发展也日新月异, 由于不同的单位物力、财力的差异, 湖南省安装的加速器在不同地区有国产新加速器与进口二手加速器。2003年3月, 我们分别对某两个单位安装的国产新加速器和进口二手医用电子加速器的性能进行了检测, 对两台加速器的性能进行比较, 现将部分结果报告如下。

1 检测仪器与方法

- 1.1 检测仪器 2670A FARMER 剂量仪, FJ-347A $X.\gamma$ 剂量仪, RFA-300 三维水箱, 热释光剂量计, UMO LB123 型多功能辐射防护测量仪。
- 1.2 检测方法 按现行有关标准[1~3]进行。

2 结果

2.1 一般情况 检测的新旧两台医用电子加速器分属于两个不同的地区,国产新机为单能 6 MV X 射线机,进口二手机为国内某单位经维修后转让给我省某单位的,为双光子机, X 射线标称能量为 8 MV,电子线各档的标称能量分别为 5 .6 .8 .10 .12 .14 MeV,但由于设备的原因,电子线各标称能量档的性能超标较多,虽经维修人员多方调试。仍难达标,为控制治疗质量,暂不

能应用。其他情况详见表1。

表1 新旧两台医用电子加速器一般情况

加速器	中 型号		安装日期	射线类型	
国产新机	$\times \times \times$	2003 01	2003-03	X 射线	
进口二手机	SL75—20	1975	2002-10	X 射线和电子线	

- 2.2 机器性能比较
- 2.2.1 剂量监测系统

表 2 新旧两台 医用电子加速器剂量监测系统性能比较

技术性能指标	检测	-国家标准	
1又小注的指例	国产新机	进口二手机	国家你准
校准的准确性	-0.17%	0.40%	$< \pm 3\%$
重复性	0.21%	0.04%	< 0.7%
线性	1.18%	0.60%	$<\pm2\%$
短期稳定性	0.90%	0.50%	$<\pm2\%$
2d 稳定性	0.18%	-0.08%	$<\pm2\%$
高剂量辐照后稳定性	1.00%	0.31%	$<\pm2\%$

- 2.2.2 辐照性能指标(表 3)
- 2. 2. 4 防护性能(表 4)

表 3 辐照性能指标比较

THE PART OF THE PA							
++> 44 - 45 +5 +=	检测						
技术性能指标	国产新机	—————————————————————————————————————	国家标准				
方形野的均整度(各方向)	100.8% ~ 102.3%	102. 3 % ~ 103. 5%	< 106%				
方形野的对称性(各方向)	$100.7\% \sim 101.8\%$	102. $7\% \sim 103.0\%$	< 103%				
方形野半影宽度(各方向)	3. $7 \text{mm} \sim 5$. 3mm	5. $7 \text{mm} \sim 6.7 \text{mm}$	≪8mm				
最大吸收剂量深度	_	18. 7mm	8MV (20 ± 2) mm				
取入吸収剂里冰皮	13.4mm	_	6MV (15 ± 2) mm				
V. 针状交体性	_	69.8%	$8MV 71\% \pm 3\%$				
X 射线穿透性	65. 7%	_	6MV 67. $6\% \pm 3\%$				
随设备角度变化	1.0%	0. 3%	< 3%				
随机架旋转的变化关系	1.0%	0. 5%	$<\pm2\%$				
随辐射野的变化(5 cm× 20cm、20cm× 5 cm) 光野校准	1.0%	1. 4%	$<\pm2\%$				

表 4 防护性能比较

++ -	- M- 45 +5 +5	检2	 ≦结果	
技术性能指标		国产新机	进口二手机	国家标准
穿过限束装置的	关上钨门开下钨门	0.06%	0.49%	< 2%
X 射线泄漏辐射	开上钨门关下钨门	1.0%	0.88%	
最大有用线束外	距射线束中心 1m 处	0. 13%	0.10%	< 0.5%
泄漏辐射	距射线束中心 2m 处	0.01%	0.04%	< 0.2%

2.2.5 机械性能(表 5)

作者单位: 湖南省劳动卫生职业病防治所, 湖南 长沙 410007 作者简介: 刘建军(1967~), 男, 湖南沅陵人, 硕士, 研究方向: 辐射防护。

【医疗照射】

沂南县医用 X 射线诊断服务水平调查分析

刘素芹¹,干瑞广²

中图分类号: R148 文献标识码: B 文章编号: 1004-714X(2004)03-0211-02

【摘要】目的 对全县医用诊断 X 射线服务水平进行调查分析。方法 采取由各级医院办公室、放射科医生统计登记办法。结果 县、乡(镇) 医院、骨科医院门诊中 X 射线诊断的受检率占 10.59%,三种医院之间的受检率差异有非常显著性(P<0.01),胸透、胃肠、拍片检查的阳性率分别为 34.07%,46.96%,69.00%,三者之间差异有非常显著性(P<0.01)。结论 胸透检查乡镇医院的阳性率较县级医院高,胃肠检查县级医院的阳性率高于乡镇的阳性率,拍片检查骨科专科医院阳性率明显高于县、乡级医院。

【关键词】 X 射线诊断; 服务水平; 阳性率

医疗照射是人工电离辐射最大的来源, 医疗照射是放射卫生监督管理工作的重点, 为了使医用 X 射线诊断更好地为受检者服务, 我们在全县范围内进行了一次 X 射线诊断服务水平调查, 现将结果报告如下。

1 内容与方法

- 1.1 对象 对沂南县的 3 个县属单位, 18 个乡镇医院, 3 个私营骨科医院进行调查,调查率为 98%。
- 1.2 内容 对全县的 2001 年、2002 年医院门诊、放射科的工作量进行统计,并登记了 2003 年 10 月份工作量,分胸透、胃肠、拍片的阴性和阳性病人,阴性是指无异常发现,老年性肺纹理增粗,阳性是指有异常现象。拍片的质量分优、良、差、劣四级。1.3 方法 采取由各级医院办公室、放射科医生统计登记办法。

2 结果与分析

2.1 X 射线诊断应用频率 2001年和2002年全县 X 射线诊断频率分别为126.46人次/千人口和121.78人次/千人口,低于全国平均水平186.4人次/千人口和196.21人次/千人口[1]。2.2 县、乡两级医院和骨科医院 X 射线诊断频数的比较 对县、乡、骨科医院门诊量中 X 射线诊断的频数见表 1。

从表 1 中可以看出, 县、乡(镇)医院、骨科医院门诊中 X 射 线诊断的受检率占 10.59%, 乡镇级医院的受检率比较低, 三级

作者单位: 1 沂南县卫生防疫站, 山东 沂南 276300; 2 临沂市卫生 防疫站 作者简介: 刘素芹(1959~)山东沂南人, 主管医师, 从事卫生监督防护 工作。

表 5 机械性能比较

++ -+ +- + +	检测		
技术性能指标	国产新机	进口二手机	国家标准
限束系统旋转360光野中心偏差	< 1mm	1 mm	$<\pm 2$ mm
机架旋转360°光野中心偏差	1mm	<2 mm	$<\pm 2mm$
机架旋转角度与数字指示偏差	0. 5°	<0.5°	$<$ 1 $^{\circ}$
辐射野与光野的指示	< 2mm	-2mm	$<\pm3\text{mm}$
限束系统等中心	< 1mm	<1 mm	$<\pm 2mm$
旋转机架等中心	1mm	<2mm	$<\pm 2mm$
光距尺指示误差	< 2 mm	<1 mm	<5 mm
照射野尺寸与数 5cm×5cm 字野指示的误差: 20cm×20cm	0mm — 1mm	0mm 1mm	$<\pm 2$ mm

不考虑进口二手机的不合格的电子线各档指标,仅从经检验合格的8MV X 射线的性能指标分析,新旧两台加速器均符合相关国家标准规定的要求,但在加速器的剂量监测系统性能指标方面,各指标均以进口二手机的指标为优。而辐照性能各指

表1 X 射线诊断频数的比较

医院级别	门诊量	受检人数	受检率(%)
县级医院	42 089	4 866	11.56
乡级医院	64 7 5 1	5 756	8. 89
骨科医院	996	792	79.54
合 计	107 836	11 414	10.59

医院之间的受检率经统计学处理,差异有非常显著性(P < 0.01)。说明了到县级医院就诊病人病情较重的占的比例较大,因而县级医院的阳性率高于乡镇医院,骨科医院的阳性率明显高于综合医院,因为到骨科医院就诊的大都是外伤病人这符合实际情况。

表2 不同类型 X 射线检查所占的百分比

	•					
	胸透		胃肠		 拍片	
医院类别 小计	受检 人数	百分比	受检 人数	百分比	受检 人数	百分比
县级医院 4866	2 478	50. 93	549	11. 28	1 839	37. 79
乡镇医院 5756	3 691	64. 12	684	11.88	1 381	23.99
骨科医院 792	86	10.86	0	0	706	89. 14
合 计11414	6 255	54.08	1 233	10.80	3 926	34. 40

从表 2 中可以看出,在县、乡镇医院进行 X 射线检查时主要是胸透检查为主,其次是拍片、胃肠,在乡镇医院胸透占的比例较高,在专科医院主要是以拍片为主。

标方面, 国产新机优于进口二手机, 而其他方面的指标, 两台机器比较, 无明显差别。

对于进口二手机的不合格的电子线各档, 还有可能经工程 技术人员的进一步维修而达到国家标准规定的要求, 从而应用 于临床治疗。

以上新旧两台医用电子加速器的性能比较,表明在性能上国产新机和进口二手机无明显差别,各单位在安装医用电子加速器之前,应根据自己单位的财力状况、人力资源、医疗市场潜力进行综合考虑配置不同的机型。同时还要考虑运行中的维护等问题。

参考文献:

- [1] GBZ126-2002, 医用电子加速器卫生防护标准[S].
- [2] GB9706.5, 能量为 1~50MeV 医用电子加速器专用安全要 求[S].
- [3] GB15213, 医用电子加速器性能和试验方法[S].

(收稿日期:2003-08-20)