DOI: 10. 13491/j. cnki. issn. 1004 -714x. 2000. 04. 052

中国辐射卫生 2000 年第 9 卷第 4 期

以上测试结果可见: 操作位为 $0.1\sim1.0~\mu\text{Gy}^{\circ}\,\text{h}^{-1}$ 多属本底辐射水平, 其它监测点多数低于国家标准 $^{[1]}$; 主、副防护门门缝处均超过国家标准规定的管理区限值。

表 2 野外 X 射线探伤防护 剂量监测结果(\(\mu \Gv/h\))

操作位(与线束成180°)		公众界限	公众界限(与线束成 90°)	
距离(m)	剂量率范围	距离(m)	剂量率范围	
20	22~25	30	3.0~22	
25	15 ~ 55	35	2.0~16	
30	8. 2 ~ 52	40	3.6~5.5	
35	3. 0 ~ 32	50	2.5~5.0	
40	7. 3 ~ 22	60	1.3~4.5	
45	5. 0 ~ 18	65	0.1~4.0	
50	0.1~15	70	1.3~4.5	
		80	0.1~3.0	

注: 测试条件为探伤机额定电压电流的各种允许范围。

野外探伤作业人员的安全距离为 40 m 以远, 公众为 60 m 以远, 上述结果表明: 操作人员安全距离以外射线辐射水平为: $0.1 \sim 22 \mu \text{Gy/h}$ 均在国家标准以内; 公众界限外射线水平为 $0.1 \sim 4.5 \mu \text{Gy/h}$ 时多数测量不超过国家标准。

3 分析与评价

3.1 室内探伤防护情况普遍较好, 经监测操作位多为本底射线值 $(0.1 \sim 1.0 \mu \text{Gy/h})$; 存在问题主要是门缝、门拉手部位有少量射线泄漏; 个别探伤室无通风设施, 防护门上无灯机连锁装置; 二铆探伤房主防护门外常有其它工种人员工作, 应将防护门加宽, 使射线辐射水平控制在国家标准以内。

- 3.2 野外探伤主要以个人防护为主,使用铅房屏蔽作业才较安全,个别单位无铅房;没有或不穿戴个人防护用品是野外探伤比较普遍的问题;野外探伤工作人员只要在 40 m 以远距离操作均比较安全;其次,部分单位野外探伤公众界限内射线辐射水平超过国家标准,应考虑作业时间错开并划定警戒范围和设置标记,提醒公众高度注意。
- 4 防护对策
- 4.1 将放射作业纳入总厂的安全生产管理范围,并根据国家的《放射性同位素与射线装置放射防护条例》严格进行考核与检查.
- 4.2 实行登记制度,建设和改造放射作业场所必须报总厂安环处、公安处、职防所,放射防护设施必须与主体工程同时设计审批、同时施工和同时验收投产。
- 4. 3 做好放射防护的宣传教育工作,对作业人员进行安全防护知识培训和法规教育。
- 4.4 完善放射作业人员的健康档案,定期进行健康检查。
- 4.5 严格操作规程,确保作业人员和公众的安全和健康,放射作业场所设置放射性标志和必要的防护安全连锁、报警装置或工作信号。
- 4.6 定期进行放射防护监测,发现问题及时处理。
- 4.7 配备必要的个人防护用品,如铅眼镜、铅防护服等。参考文献:
- [1] GB 16357— 1996, 工业 X 射线探伤放射卫生防护标准 [S].

收稿日期: 1999-07-08

吉林省饮用天然矿泉水中⁴⁰K 放射性水平

于 峰 杨明远 孔 杰 朴红莲 马 莹 杨文堦 曲银燕!

(吉林省卫生防疫站,长春 130021)

饮用天然矿泉水富含多种人体必需的宏量元素和微量元素 对人体健康有重要的保健作用。饮用天然矿泉水中含有 40 K 从放射卫生考虑,需关注 40 K 的含量。为此作者于 $1998 \sim 1999$ 年对吉林省饮用天然矿泉水中 40 K 放射性水平进行了监测。 1 仪器与方法

2 结果与讨论

吉林省 9 个地区 72 个品种饮用天然矿泉水中 40 K 浓度(表 1) 均值为(3,54 \pm 1,91) \times 10 $^{-2}$ Bq° L $^{-1}$,范围在(0,47 \sim 10,87) \times 表 1 饮用 天然 矿泉水中 40 K 浓度(10 2 Bq° L $^{-1}$)

1		フてがいっか	1 K W X (10	bq L /
地区	样品数	品种数	范 围	$\bar{x} \pm s$
长春	43	27	0.47~2.36	1. 32 ± 0.50
延边	20	19	1. 26 ~ 10. 87	4. 06 ± 3.04
吉林	9	8	1. $05 \sim 10.53$	4. 08 ± 3.40
白山	6	2	5. 38 ~ 10. 58	7. 98 ± 3.67
通化	11	7	1. 14 ~ 6. 61	3. 47 ± 2 . 12
四平	6	4	1.94~5.09	3. 03 ± 1.41
辽源	3	3	1. 10 ~ 3. 29	2. 20 ± 1.09
白城	1	1		2. 13
松源	1	1		3. 62
全省	100	72	0. $47 \sim 10.87$	3. 54 ± 1.91

10⁻² Bg·L⁻¹之间。其中, 白山地区最高, 长春地区最低。

在吉林省 9 个地区中, 延边、吉林、白山、通化 4 个地区处本省东部长白山区, 白城、松原两个地区处于本省西部松嫩平原, 长春、四平、辽源 3 个地区处于本省中部松辽平原。 长白山区饮用天然矿泉中 40 K 浓度均值为 $(4.90\pm2.07)\times 10^{-2}$ Bq° L $^{-1}$, 范围在 $(1.05\sim10.87)\times 10^{-2}$ Bq° L $^{-1}$ 之间。 中西部平原地区饮用天然矿泉水中 40 K 浓度均值为 $(2.46\pm0.89)\times 10^{-2}$ Bq° L $^{-1}$, 范围在 $(0.47\sim5.09)\times 10^{-2}$ Bq° L $^{-1}$ 之间。由此可见,本省饮用天然矿泉水中 40 K 浓度,山区〉平原,两地饮用天然矿泉水中 40 K 浓度之比为 1.99 : 1,山区与平原之间饮用天然矿泉水中 40 K 浓度差异有显著性 (P<0.05)。

在中西部平原地区,松辽平原饮用天然矿泉水 40 K 浓度均值为 $(2.18\pm0.86)\times10^{-2}$ Bq $^{\circ}$ L $^{-1}$, 松嫩平原饮用天然矿泉水浓度均值为 $(2.88\pm1.05)\times10^{-2}$ Bq $^{\circ}$ L $^{-1}$, 松嫩平原比松辽平原略高,但二者之间差异无显著性(P>0.05)。

天然矿泉水是地下水,通过断裂带长时间深循环过程中,接受大气降水渗入补给,并与围岩发生溶解、溶滤、溶蚀作用,不断从岩石中富集大量有益组份和元素而形成的。 因此,天然矿泉水中⁴⁰K 浓度高低与矿泉水所在位置的地质结构有关。

吉林省饮用天然矿泉水中 40 K 浓度, 虽然白山地区最高(均值为 7. 98× 10^{-2} Bq * L $^{-1}$), 可是仍低于国家标准中规定的公众食入限值(1.2×10^3 Bq * L $^{-1}$) 11 。 因此, 就 40 K 而言, 饮用上述天然矿泉水是安全有益的。 参考文献:

[1] GB 4792-84, 放射卫生防护基本标准[S].

收稿日期: 1999-11-02