重庆市建筑材料辐射水平与剂量估算

张胤莲 吴富荣

(重庆市卫生防疫站,重庆630042)

随着工业的发展和对工业废渣的综合利用,一些用工业废渣生产的建筑材料正逐步取代传统建材。建材中的放射性主要来源于²²⁶Ra、²³²Th和⁴⁰K等天然放射性核素,而废渣对这些核素的富集作用,使建材中的放射性有增高的趋势。因此,调查了解建材的辐射水平,估算居民的受照剂量,对保护广大居民的健康与安全,促进建材工业的合理发展,具有重要意义。我们于 1988~1995 年对重庆地区的主要建材,重点对工业废渣建材的辐射水平进行了调查,并对居民的受照剂量作了估算。

1 调查方法

1.1 样品采集与处理 按照《建筑材料放射卫生防护标准》(GB6566-86)^①提出的方法和采样量,在各建材厂现场采集成品建材和主要原料的代表性样品。经粉碎研磨,过筛(80目),烘干、称量并处理成溶液,备核素分析用。

1.2 分析方法 用闪烁射气法测定²²⁶Ra 活度;用 N-235 环已烷萃取,偶氮胂 □ 分光光度法测定 Th 含量;用四苯硼钠容量法测定 K 含量。然后根据 Th 和 K 的丰度计算²³²Th 和⁴⁰K 的放射性活度。

2 结果与讨论

2.1 各类建材的天然放射性核素含量 表1给出了各类成品建材和原料的放射 性核素含量均值和范围。可以看出,各类建材 的比活度差异较大,不同厂家生产的同类建 材因其原料的来源不同亦存在较大差异。粘 土砖、灰沙砖、普通水泥、河沙、土壤、页岩 等传统建材的比活度与世界常用建材典型值 比较一致[2]。工业废渣建材,如煤渣砖,煤矸 石砖、硫铁矿渣砖、矿渣水泥等的放射性比活 度均高于世界建材典型值。废渣建材成品的 比活度高与其主要原料的放射性含量高有直 接关系。根据建材放射性核素比活度限制式 (m,≤1、m_{Ra}≤1) 判定成品建材是否符合要 求(1)。各种成品建材的 m, 和 mRa平均值范围 分别为 0.46~0.86 和 0.16~0.64。调查发现 少数废渣建材有超标现象。煤渣砖的超标率 达 14.78%, 且 m, 和 mRa最大值为 1.38 和 1.21。这除了与煤渣本身比活度高有关以外, 还与个别厂家盲目追求经济效益, 随意增加 煤渣比例有关。为使废渣建材达到要求。废渣 建材可用下式进行配方[3]:

$$\frac{\Sigma fi \cdot C_{Rai}}{330} + \frac{\Sigma fi \cdot C_{Thi}}{260} + \frac{\Sigma fi \cdot C_{ki}}{3800} \leq 1$$

 $\Sigma fi \cdot C_{Rat} \leq 200$

参考文献

- 1 卫生部环境贯穿辐射累积剂量调查协作组。中国 环境天然贯穿辐射水平与评价。中华放射医学与 防护杂志,1989,9(4)
- 2 袁镛龄,等。高本底地区环境辐射和累积照射量的测定。中华放射医学与防护杂志,1982、2 •166•

(2)

3 United nations. Sources effects and risk of ionizing radiation. UNSCEAR Report New YorR. 1988.

(1995年10月4日收稿)

表 1 建筑材料放射性核素含量 (Bq·kg·)

名 称	样品数	²²⁶ Ra	²³ 2 Th	40 K	m_{Ra}	\mathbf{m}_{r}
成品			· 			
煤渣砖	142	128.6 (45.6 \sim 241.5)	76.8 (22.9~173.1)	641 (239~1562)	0.64	0.86
煤矸石砖	82	87.4 (39.8~164.1)	66.1 (25.6~133.5)	890 (271~1532)	0.44	0.72
硫铁矿渣砖	3	82.2 (66.9~105.8)	50.9 (42.4~57.3)	1021 (876~1250)	0.41	0.69
加气混凝土	2	84.1 (57.2~111.0)	34.6 (26.9~42.2)	869 (676~1062)	0.43	0.59
灰沙砖	3	31.9 (28.4~36.8)	57.4 (52.5~61.3)	656 (613~706)	0.16	0.48
页岩砖	5	91.9 (76.7~111.7)	55.5 (50.0~65.1)	579 (390~1149)	0.46	0.67
粘土砖	3	49.6 (48.3~50.8)	66.3 (62.3~70.3)	571 (543~600)	0.25	0.54
水泥石粉砖	5	60.9 (40.6~73.5)	27.7 (17.8~48.7)	702 (490~853)	0.30	0.46
矿渣水泥	11	109.5 (44.0~229.8)	47.0 (24.4~104.7)	668 (421~1035)	0- 55	0.65
普通水泥	8	64.8 (41.7~97.7)	46.9 (24.4~105.7)	539 (255~1052)	0.32	0.49
原料:						
煤渣	26	398.0 (115.1~1077.1)	84.4 (40.9~293.3)	806.7 (255~1960)	1. 99	1.66
煤矸石	12	$127.9 (47.2 \sim 254.5)$	67.9 (51.9~108.9)	861 (312~1211)	0.64	0.85
页岩	6	49.7 (31.3~70.9)	54.0 (40.5~63.6)	780 (417~985)	0. 25	0.54
石灰	6	53.0 (36.2~78.5)	21.8 (13.4~33.5)	448 (362~560)	0.26	0.35
河沙	7	33.4 (16.7~48.3)	59.7 (41.8~77.2)	697 (607~808)	0.16	0.51
土壤	6	48.7 (35.6~60.4	67.5 (54.2~78.6)	643 (480~783)	0.24	0.56
世界建材典型值		50	50	500	0. 25	0.46

注 $m_{Ra} = \frac{A_{Ra}}{2000}$; $m_r = \frac{A_{Ra}}{350} + \frac{A_{Th}}{260} + \frac{A_K}{4000}$

2.2 剂量估算

按文献⁽⁴⁾提供的方法,估算几类建材所 致居民的内、外照射年有效剂量当量 H_{E内}和 H_{E外}。

$$H_{E/\!\!\!/} = 3.14 \times 10^{-2} A_{Ra} + 4.23 \times 10^{-2} A_{Th} + 0.275 \times 10^{-3} A_{k}$$
 (3)

 $H_{EH}=8.417\times10^{2}A_{Ra}$ · η (4) 建材中 Rn 的释出率 η ,按混合建材住房取 4%。将几类建材的比活度代入(3)、(4) 式,可估算出 H_{EH} 和 H_{EH} 。扣去我国公众室内 γ 外照射剂量调查的 $H_{EH}=0.6mSv/a$ 和世界建 材 典 型 值 所 致 内 照 射 剂 量 $H_{EH}=0.168mSv/a$ 的本底值,即算出各类建材的附加有效剂量当量 H_{EH} ,其结果列于表 2。

表 2 几类建筑物所致居民 年有效剂量当量 (mSv/a)

建筑物类型	H_{Eff}	H_{Erp}	H_{EM}
煤渣砖	0.90	0.43	0.56
煤矸石砖	0.80	0.29	0.33
硫铁矿渣砖	0.75	0.27	0.25
加气混凝土	0.65	0.28	0.16
页岩砖	0.73	0.30	0.26
粘土砖	0.59	0.16	-0.02
灰沙砖	0.52	0.11	-0.14
水泥石粉砖	0.50	0.20	-0.07

由表 2 可以看出,除粘土砖、灰沙砖和水泥石粉砖所致内、外照射剂量接近本底值外,含工业废渣的建材均不同程度地增加了居民的受照剂量。其中,以煤渣砖的附加剂量最高,为 0.56mSv/a,其次如煤矸石砖。页岩砖因其掺入内燃煤也使剂量有所增加。

3. 小结

重庆地区传统建材的放射性含量与世界建材典型值基本一致,工业废渣建材的放射性含量则高于世界建材典型值。废渣建材附加剂量为 0.16~0.56mSv/a,其中以煤渣砖住房附加的剂量最高。调查中发现少数建材的 m, 和 m_R,超标,应引起重视。防护部门应加强监督管理,并协助生产厂家合理选料、科学配方,以促进建材工业的合理发展。

参 考 文 献

- 1 中华人民共和国国家标准。建筑材料放射卫生防护标准(GN6566—86).
- 2 潜郁燕。我国常用建材的天然放射性典型值。中 华放射医学与防护杂志,1986,6(6);413
- 3 中华人民共和国国家标准,建筑材料用工业废渣 放射性物质限制标准 (GB6763—86)
- 4 中华人民共和国卫生部. 建筑材料放射卫生防护标准(GB6566-86)的依据和说明。1986.

(1995年11月18日收稿)